Точечные оценки законов распределения

 

Рассмотренные выше функции распределения описывают пове­дение непрерывных случайных величин, т.е. величин, возможные значения которых неотделимы друг от друга и непрерывно запол­няют некоторый конечный или бесконечный интервал. На прак­тике все результаты измерений и случайные погрешности являют­ся величинами дискретными, т.е. величинами Ai, возможные зна­чения которых отделимы друг от друга и поддаются счету. При использовании дискретных случайных величин возникает задача нахождения точечных оценок параметров их функций распределе­ния на основании выборок ряда значений Ai принимаемых слу­чайной величиной X в i независимых опытах. Используемая вы­борка должна быть репрезентативной (представительной), т.е. должна достаточно хорошо представлять пропорции генеральной совокупности.

Оценка параметра называется точечной, если она выражается одним числом. Задача нахождения точечных оценок — частный случай статистической задачи нахождения оценок параметров функции распределения случайной величины на основании выбор­ки. В отличие от самих параметров их точечные оценки являются случайными величинами, причем их значения зависят от объема экспериментальных данных, а закон распределения — от законов распределения самих случайных величин.

Точечные оценки могут быть состоятельными, несмещенными и эффективными. Состоятельной называется оценка, которая при увеличении объема выборки стремится по вероятности к ис­тинному значению числовой характеристики. Несмещенной на­зывается оценка, математическое ожидание которой равно оце­ниваемой числовой характеристике. Наиболее эффективной счи­тают ту из нескольких возможных несмещенных оценок, которая имеет наименьшую дисперсию. Требование несмещенности на прак­тике не всегда целесообразно, так как оценка с небольшим сме­щением и малой дисперсией может оказаться предпочтительнее несмещенной оценки с большой дисперсией. На практике не все­гда удается удовлетворить одновременно все три этих требова­ния, однако выбору оценки должен предшествовать ее критиче­ский анализ со всех перечисленных точек зрения.

Точечной оценкой МО результата измерений является среднее арифметическое значение измеряемой величины

 

                                (3.1).

 

При любом законе распределения оно является состоятельной и несмещенной оценкой, а также наиболее эффективной по крите­рию наименьших квадратов.

Точечная оценка дисперсии, определяемая по формуле

 

                    (3.2),

 

является несмещенной и состоятельной.

СКО случайной величины х определяется как корень квадратный из дисперсии. Соответственно его оценка может быть найдена путем извлечения корня из оценки дисперсии.

 

          (3.3).

 

Полученные оценки МО и СКО являются случайными величи­нами. Это проявляется в том, что при повторениях серий из n наблюдений каждый раз будут получаться различные оценки  и .

 

 

Оглавление

Практическая часть